ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
John S. McDonald, T. J. Connolly
Nuclear Science and Engineering | Volume 8 | Number 5 | November 1960 | Pages 369-377
Technical Paper | doi.org/10.13182/NSE60-A25816
Articles are hosted by Taylor and Francis Online.
An experiment was performed to investigate the transfer of thermal energy by natural convection from molten sodium to a cold plate. A large tank of sodium was used to simulate a semi-infinite mass of sodium. A horizontal circular plate in intimate contact with the sodium surface was cooled by flowing tetralin which caused its temperature to be lower than the sodium bulk temperature. As a result, natural convection occurred in the sodium and thermal energy was transferred from the sodium to the plate. Data were collected at steady-state conditions for values of the Rayleigh number ranging from 4.8 × 106 to 4 × 107. It was found that the experimental results could be correlated by the expression where Nu is the Nusselt number, and Ra is the Rayleigh number. The calculated probable error in the Nusselt number given by the above equation is 1.08, and the multiple correlation coefficient for the experimental results and the equation is 0.954. The above result is shown to be consistent with the results of other investigators who used different fluids in physical systems somewhat similar to that used in this experiment with sodium.