ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Paul Wilson, Phiphat Phruksarojanakun
Nuclear Science and Engineering | Volume 152 | Number 3 | March 2006 | Pages 243-255
Technical Paper | doi.org/10.13182/NSE06-A2579
Articles are hosted by Taylor and Francis Online.
A new Monte Carlo (MC) method for calculating the isotopic inventory of material subjected to a neutron flux is developed and demonstrated. The method is particularly suited to modeling materials that flow through a system in a nondeterministic path. The method has strong analogies to MC neutral particle transport. The analog methodology is fully developed, including considerations for simple, complex, and loop flows, and enabling concepts such as sources and tallies. A wide variety of test problems is employed to demonstrate the validity of the analog method under various flow conditions. The method reproduced the results of the as-low-as-reasonably-achievable deterministic inventory code for comparable problems and is self-consistent when comparing complex flow scenarios to mathematically identical simple flow scenarios. A demonstration of highly scalable parallelization does not eliminate the need to develop variance reduction techniques.