ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Victor E. Grob, E. Santandrea, Hilmar Ritz
Nuclear Science and Engineering | Volume 7 | Number 6 | June 1960 | Pages 514-524
Technical Paper | doi.org/10.13182/NSE60-A25760
Articles are hosted by Taylor and Francis Online.
As part of the Yankee and the Belgian Reactor-3 Critical Experiments program at the Westinghouse Reactor Evaluation Center, measurements have been made of the parameters leading to p, f, and ϵ in a light-water moderated heterogeneous reactor with slightly enriched UO2 fuel rods clad in stainless steel. A detailed description of this reactor is given in reference 1. Measurements were made using 4.48% and 2.73% enriched fuel with lattice pitches of 0.470 and 0.435 in. The individual UO2 sintered pellets, in the fuel rods, had a diameter of 0.300 in. and a length of 0.600 in. The 4.48% and 2.73% fuel rods contained 90 and 80 pellets, respectively. The stainless steel cladding was 0.305 in. i.d. and 0.347 in. o.d. for the 4.48% enriched fuel, and 0.306 in. i.d. and 0.338 in. o.d. in the case of 2.73% enrichment. The measurements were performed using a higher fuel enrichment than used previously at Bettis (2, 3) and elsewhere for similar experiments, thus uncovering a large unexplored range of enrichments.