ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
S. B. Gunst, E. D. McGarry, J. J. Scoville
Nuclear Science and Engineering | Volume 7 | Number 5 | May 1960 | Pages 407-418
Technical Paper | doi.org/10.13182/NSE60-A25738
Articles are hosted by Taylor and Francis Online.
Natural uranium dioxide specimens of Shippingport PWR-l blanket-rod geometry are exposed in the Materials Testing Reactor (flux 2 × 1014 n/cm2−sec) and discharged periodically (every three weeks) for measurements in the Reactivity Measurement Facility (RMF). The time-integrated thermal and epithermal fluxes are measured during each exposure cycle, and together with the MTR Daily Power Logs, give the complete exposure history. Measurements in the RMF are used to determine an experimental value for η/η0 (η0 is the preirradiation value) which may be compared with the theoretical η/η0 calculated for the measured exposure history using appropriate neutron-interaction parameters. In the theoretical calculations, the thermal absorption cross section of stable fission products is taken to be 50 barns per fission. Although the experimental and theoretical results are derived completely independently, agreement within 1 % in η/η0 is found for the behavior following all cycles of irradiation comprising exposures from zero to 15,600 Mwd/ton.