ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Sellafield awards $3.86B in infrastructure contracts to three companies
Sellafield Ltd., the site license company overseeing the decommissioning of the U.K.’s Sellafield nuclear site in Cumbria, England, announced the award of £2.9 billion (about $3.86 billion) in infrastructure support contracts to the companies of Morgan Sindall Infrastructure, Costain, and HOCHTIEF (UK) Construction.
Farno L. Green, John A. Martin
Nuclear Science and Engineering | Volume 7 | Number 4 | April 1960 | Pages 387-391
Technical Paper | doi.org/10.13182/NSE60-A25733
Articles are hosted by Taylor and Francis Online.
The radioisotopes Mn54, I125, and I130 were produced at higher rates and at lower cost when targets of isotopically enriched Cr54, Te125, and Te130 were bombarded with protons in the ORNL 86-Inch Cyclotron. The product isotopes were carrier-free and also relatively free of undesired radioisotopes. The use of enriched isotopes as cyclotron targets is economically attractive when the target material can be recovered and reused. To obtain the maximum production rate for radioisotopes in a cyclotron, both the usable beam power and the excitation function of the nuclear reaction must be considered; in some cases the maximum rate is achieved at a reduced energy. With the ORNL 86-Inch Cyclotron, (p, n) reaction production rates were increased by a factor of 1.7 by decreasing the proton energy from 22 to 18 Mev and doubling the output current. Methods of reducing the energy below the maximum design value are discussed.