ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
NEUP honors young ANS members with R&D awards
Each year, the Department of Energy’s Nuclear Energy University Program (NEUP) recognizes graduate and undergraduate students for their innovative nuclear energy research. The winners of the Innovations in Nuclear Energy Research and Development Student Competition (INSC) receive honoraria along with travel and conference opportunities, including the chance to present their publications at the annual American Nuclear Society Winter Conference & Expo.
Farno L. Green, John A. Martin
Nuclear Science and Engineering | Volume 7 | Number 4 | April 1960 | Pages 387-391
Technical Paper | doi.org/10.13182/NSE60-A25733
Articles are hosted by Taylor and Francis Online.
The radioisotopes Mn54, I125, and I130 were produced at higher rates and at lower cost when targets of isotopically enriched Cr54, Te125, and Te130 were bombarded with protons in the ORNL 86-Inch Cyclotron. The product isotopes were carrier-free and also relatively free of undesired radioisotopes. The use of enriched isotopes as cyclotron targets is economically attractive when the target material can be recovered and reused. To obtain the maximum production rate for radioisotopes in a cyclotron, both the usable beam power and the excitation function of the nuclear reaction must be considered; in some cases the maximum rate is achieved at a reduced energy. With the ORNL 86-Inch Cyclotron, (p, n) reaction production rates were increased by a factor of 1.7 by decreasing the proton energy from 22 to 18 Mev and doubling the output current. Methods of reducing the energy below the maximum design value are discussed.