ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Keiichi Mochizuki, Atushi Takeda
Nuclear Science and Engineering | Volume 7 | Number 4 | April 1960 | Pages 336-344
Technical Paper | doi.org/10.13182/NSE60-A25727
Articles are hosted by Taylor and Francis Online.
Neutron flux spatial oscillation due to xenon build-up in the reactor core is a well-known characteristic of large power reactors. Especially a reactor with a positive temperature coefficient of reactivity tends to have such a characteristic. In this paper, the analysis has been pursued on a Calder Hall type reactor. Specific features to be taken into consideration were a large neutron flux flattened zone in the core and a graphite sleeve in each coolant channel. First, the threshold values of the temperature coefficient for initiating oscillation of successive orders of modes in radial and azimuthal directions as well as oscillation periods have been calculated. Secondly, the effect of the sleeve on threshold value and oscillation period has been investigated. Thirdly, in order to clarify this phenomenon, a vector analysis has been made which helps us to understand the critical condition for initiating the oscillation as well as the relation between effects of neutron leakage, temperature coefficients of fuel and moderator, and xenon poisoning. Finally, taking advantage of the transfer function defined in each mode, the spatial control method could be analyzed without using a spatial simulator.