ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Donald W. Bell
Nuclear Science and Engineering | Volume 7 | Number 3 | March 1960 | Pages 245-251
Technical Paper | doi.org/10.13182/NSE60-A25709
Articles are hosted by Taylor and Francis Online.
A study and statistical analysis has been performed on available burnout heat-flux data for vertical upflow of water in uniformly heated rectangular channels at 2000 psia. Two correlating equations were developed with the fluid mass velocity and enthalpy at the burnout location as the two independent variables. It was not found necessary to include the channel length-to-thickness ratio as a third independent variable. The range of variables studied are: 540 to 1000 Btu/lb burnout enthalpy and 0.2 × 106 to 5 × 106 lb/hr-ft2 mass velocity. It is shown that the burnout heat-flux decreases as mass velocity increases for a constant burnout enthalpy in the quality range. Also, a comparison of the developed correlations based upon data for uniformly-heated channels was made with 25 burnout data points for channels having a cosine-shaped axial heat-flux distribution. The cosine data fall on the average of about thirty percent below the burnout heat-flux values for uniformly heated channels under the same coolant conditions at the burnout location.