ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
W. R. Kimel, W. E. Carey, F. G. Prohammer, G. C. Baldwin
Nuclear Science and Engineering | Volume 6 | Number 3 | September 1959 | Pages 233-237
Technical Paper | doi.org/10.13182/NSE59-A25664
Articles are hosted by Taylor and Francis Online.
Theoretical and experimental results of the time behavior of neutron density as a function of both positive and negative step changes in reactivity are presented. The theoretical results are obtained from solutions of the space-independent kinetic equations of a bare thermal reactor based on the Fermi continuous slowing down model and using six groups of delayed neutrons. Theoretical results are given as a function of both positive and negative step changes in reactivity. Experimental results of reactivity worth and of rod calibrations based on pedagogical experiments with the Argonaut Reactor and verifying the theoretical data are presented together with the details of the pedagogical experiment. An analytically constructed thermal flux function obtained from results of reactivity measurements in the reactor is compared with the actual recorded flux from the reactor. Experimental results obtained with the Argonaut Reactor indicate that the theoretical kinetic behavior predicted in this paper are applicable to the actual Argonaut Reactor.