ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
W. R. Kimel, W. E. Carey, F. G. Prohammer, G. C. Baldwin
Nuclear Science and Engineering | Volume 6 | Number 3 | September 1959 | Pages 233-237
Technical Paper | doi.org/10.13182/NSE59-A25664
Articles are hosted by Taylor and Francis Online.
Theoretical and experimental results of the time behavior of neutron density as a function of both positive and negative step changes in reactivity are presented. The theoretical results are obtained from solutions of the space-independent kinetic equations of a bare thermal reactor based on the Fermi continuous slowing down model and using six groups of delayed neutrons. Theoretical results are given as a function of both positive and negative step changes in reactivity. Experimental results of reactivity worth and of rod calibrations based on pedagogical experiments with the Argonaut Reactor and verifying the theoretical data are presented together with the details of the pedagogical experiment. An analytically constructed thermal flux function obtained from results of reactivity measurements in the reactor is compared with the actual recorded flux from the reactor. Experimental results obtained with the Argonaut Reactor indicate that the theoretical kinetic behavior predicted in this paper are applicable to the actual Argonaut Reactor.