ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
P. Jansson, S. Jacobsson Svärd, A. Håkansson, A. Bäcklin
Nuclear Science and Engineering | Volume 152 | Number 1 | January 2006 | Pages 76-86
Technical Paper | doi.org/10.13182/NSE06-A2565
Articles are hosted by Taylor and Francis Online.
There is a general interest in experimentally determining the power distribution in nuclear fuel. The prevalent method is to measure the distribution of the fission product 140Ba, which represents the power distribution over the last few weeks. In order to obtain the rod-by-rod power distribution, the fuel assemblies have to be dismantled.In this paper, a device for experimental nondestructive determination of the thermal rod-by-rod power distribution in boiling water reactor and pressurized water reactor fuel assemblies is described. It is based on measurements of the 1.6-MeV gamma radiation from the decay of 140Ba/La and utilizes a tomographic method to reconstruct the rod-by-rod source distribution. No dismantling of the fuel assembly is required.The device is designed to measure an axial node in 20 min with a precision of >2% (1). It is primarily planned to be used for validation of production codes for core simulation but may also be used for safeguards purposes.