ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
David Loaiza, Rene Sanchez, David Hayes, Charlene Cappiello
Nuclear Science and Engineering | Volume 152 | Number 1 | January 2006 | Pages 65-75
Technical Paper | doi.org/10.13182/NSE06-A2564
Articles are hosted by Taylor and Francis Online.
An experiment to investigate the critical mass of 237Np was performed at the Los Alamos Critical Experiments Facility. The critical configuration consisted of a 6.07-kg neptunium sphere surrounded by 62.555 kg of highly enriched uranium hemispherical shells. The experiment was performed in order to decrease the large uncertainty in the critical mass of 237Np for criticality safety and nonproliferation issues. The critical configuration had an experimental keff of 1.003. Comparison of the experimental results with computational methods used to predict the keff of the system led to identification of a large discrepancy in the 237Np cross-section data from ENDF/B-VI used by the analysis performed with the MCNP code. In an effort to bound the uncertainty on the experimental keff, a sensitivity analysis was performed. This analysis systematically examines uncertainties associated with the critical experiment as they affect the calculated multiplication factor. The systematic analysis is separated into uncertainties due to mass measurements, uncertainties due to geometry of materials, and uncertainties due to impurities. Each type of uncertainty is analyzed individually, and a total combined uncertainty is derived. The sensitivity analysis on this experiment yielded a total combined uncertainty on the measured keff of ±0.0032.