ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
John Macphee
Nuclear Science and Engineering | Volume 5 | Number 5 | May 1959 | Pages 273-284
Technical Paper | doi.org/10.13182/NSE59-A25599
Articles are hosted by Taylor and Francis Online.
The response of a reactor to step changes in δk is reviewed for two cases; small positive cangesh in δk, and changes in 8k greater than β. Analytical expressions are derived which give the negative change in δk required to terminate each type of excursion. Expressions for obtaining power overshoot are also obtained for each case for various types of δk removal. The analytical results are confirmed by more exact calculations with an analog and a digital computer. It is shown that to terminate an excursion produced by a change in δk <β, it is only necessary to reduce δk at a rate such that zero δk is reached in about 21/2 sec. The fact that, to terminate a super-prompt-critical excursion, it is only necessary to reduce δk to a value equal to approximately β, is demonstrated analytically.