ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
NEUP honors young ANS members with R&D awards
Each year, the Department of Energy’s Nuclear Energy University Program (NEUP) recognizes graduate and undergraduate students for their innovative nuclear energy research. The winners of the Innovations in Nuclear Energy Research and Development Student Competition (INSC) receive honoraria along with travel and conference opportunities, including the chance to present their publications at the annual American Nuclear Society Winter Conference & Expo.
Robert W. Deutsch
Nuclear Science and Engineering | Volume 5 | Number 3 | March 1959 | Pages 150-155
Technical Paper | doi.org/10.13182/NSE59-A25573
Articles are hosted by Taylor and Francis Online.
A method for evaluating a bank of slab-type control rods in enriched hydrogenous reactors considering both thermal and epithermal capture has been developed within the framework of three neutron energy groups. An absorption area technique that combines diffusion theory in the fuel moderator region and a transport condition at the control rod boundary is utilized. The effect of the absorption area is to decrease the source strength for the thermal and epithermal energy groups. The epithermal transmission probability for a non-1/υ absorber is found by an experimental reactivity comparison to a 1/υ absorber. Assuming that the absorption area is uniformly distributed throughout the core, a hand calculation can be made which determines the number, size, and composition of rods necessary to achieve a specific cold shutdown margin.