ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
D. M. Keaveney, T. J. Krieger, M. L. Storm
Nuclear Science and Engineering | Volume 4 | Number 3 | September 1958 | Pages 332-340
Technical Paper | doi.org/10.13182/NSE58-A25532
Articles are hosted by Taylor and Francis Online.
The selection of appropriate epithermal group-averaged cross sections for use in a few-group criticality calculation is particularly difficult when resonance absorbers are present. However, by use of the SOFOCATE code for the calculation of thermal spectra in hydrogenous media, it is now practical to include low-lying resonances below 2 ev in the thermal group. Since the SOFOCATE code, which is based on the Wigner-Wilkins differential equation for monatomic hydrogen thermalization, has yielded good agreement with measured spectra in water, it is felt that use of this code and inclusion of low-lying resonances in the thermal group constitute a more accurate and convenient method of treating these resonances than other procedures. As an application of the method, a study has been made of some of the effects associated with the use of Eu as a means of reducing the temperature defect in water-moderated reactors. It is shown that the use of natural, unshielded Eu would reduce the temperature defect provided the spectral hardening introduced by the core absorption is sufficiently small. It is also shown that the strong dependence on spectral hardening is due to the presence of the Eu resonances at about 0.4 ev.