ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
G. L. Morgan, K. R. Alrick, D. W. Bowman, F. C. Cverna, N. S. P. King, P. E. Littleton, G. A. Greene, A. L. Hanson, C. L. Snead, Jr., J. M. Hall, J. Frehaut, X. Ledoux, S. Leray, E. Petibon, R. T. Thompson, P. D. Ferguson, E. A. Henry, T. E. Ward
Nuclear Science and Engineering | Volume 151 | Number 3 | November 2005 | Pages 293-304
Technical Paper | doi.org/10.13182/NSE05-A2548
Articles are hosted by Taylor and Francis Online.
Integral neutron production was measured by the manganese-activation technique, on targets semiprototypic of spallation-neutron-driven transmutation systems, after irradiation by 400-MeV to 2.0-GeV protons. The purpose of these experiments was to provide data to benchmark nuclear transport codes for targets irradiated by protons in this energy range, as well as to evaluate design options to maximize the production of spallation neutrons in various targets under consideration. These computer codes are used to design accelerator systems that will utilize spallation neutrons for the generation of tritium, transmutation of nuclear waste, production of radioisotopes, and other scientific investigations. Some of the targets used in this investigation were semiprototypic of the proposed Accelerator Production of Tritium target. Other targets were included to provide data to test the computational models in the codes. Total neutron production is the main factor that determines the economics of transmutation for a particular accelerator design. Comparisons of the data reported here with calculations from computer simulations show agreement to within 15% over the entire energy region for most of the targets.