ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NextEra and Google ink a deal to restart Duane Arnold
A day anticipated by many across the nuclear community has finally arrived: NextEra Energy has officially announced its plans to restart Iowa’s only nuclear power plant, the Duane Arnold Energy Center.
H. Hurwitz, Jr.; M.S. Nelkin
Nuclear Science and Engineering | Volume 3 | Number 1 | January 1958 | Pages 1-10
Technical Paper | doi.org/10.13182/NSE58-A25440
Articles are hosted by Taylor and Francis Online.
The energy-dependent thermal diffusion equation is considered in a region free of external sources. Two cases of experimental interest are calculated. The first of these is the steady-state condition where an eigenvalue problem for the thermal diffusion length is obtained. The associated eigenfunction is the neutron spectrum. The second case, which is mathematically identical to the first, is the exponential decay in time of the thermal flux in a pulsed source experiment. The neutron leakage is assumed to be describable by a single eigenvalue for the buckling. In this case the eigenvalue is the decay constant of the flux. When the ratio of absorption cross section to transport mean free path decreases with energy in the thermal region, the first case will give a “diffusion hardening,” and the second case a “diffusion cooling” of the neutron spectrum compared to a Maxwellian distribution at the moderator temperature. These effects are investigated quantitatively for the model of a heavy gaseous moderator.