ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
E. Varin, G. Samba
Nuclear Science and Engineering | Volume 151 | Number 2 | October 2005 | Pages 167-183
Technical Paper | doi.org/10.13182/NSE05-A2538
Articles are hosted by Taylor and Francis Online.
To mitigate some drawbacks of the discrete ordinates method or the even-parity approach, a new deterministic method for solving the Boltzmann transport equation is proposed. Based on a scaled least-squares formulation, the first-order transport equation is solved for a spherical harmonics expansion of the angular flux. This approach allows a continuous finite element discretization. Discrete equations have been derived for media with anisotropic scattering. Moreover, extensions are proposed to allow for solutions in three-dimensional multiplicative regions. Asymptotic analyses of this least-squares approach show the need for a scaling of the transport equation in order to maintain the diffusion limit. One-dimensional tests are used to evaluate this scaling operator, and results are compared with reference solutions. Anisotropic multigroup scattering cases are also presented. Tests on a three-dimensional simple problem show that ARTEMIS, the transport solver based on this method, gives solutions free of ray effects.