ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Donald G. Schweitzer
Nuclear Science and Engineering | Volume 12 | Number 1 | January 1962 | Pages 59-62
Technical Paper | doi.org/10.13182/NSE62-A25370
Articles are hosted by Taylor and Francis Online.
The activation energy for graphite oxidation was obtained from the change in the “stable length” of channel with temperature. The maximum temperature at which thermal equilibrium (between the heat generated by graphite oxidation and the heat removed by the air stream) will occur in a channel can be predicted from the heat transfer coefficient, the activation energy, and a single value of the graphite reactivity at any temperature. Above this maximum temperature, the total length of channel is thermally unstable. An equation is given expressing the length of channel that can be cooled as a function of temperature, flow rate, diameter, and reactivity.