ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NNSA furloughs 1,400 employees, pays contractors until end of month
After nearly three weeks of a government shutdown, the Department of Energy’s National Nuclear Security Administration has furloughed 1,400 employees and has retained 400 as essential employees who will continue working without pay.
Donald G. Schweitzer, Robert M. Singer
Nuclear Science and Engineering | Volume 12 | Number 1 | January 1962 | Pages 51-58
Technical Paper | doi.org/10.13182/NSE62-A25369
Articles are hosted by Taylor and Francis Online.
Thermal equilibria between the heat produced by graphite oxidation and the heat removed by coolant air streams were investigated in the temperature range from 650°C to 735°C. The studies were made on graphite channels whose reactivities differed by a factor of eight. Equilibrium occurs in channels shorter than 10 ft if the numerical value of the reactivity (cal/cm2-sec) is 100-fold greater than the heat transfer coefficient (cal/cm2-sec-°C). The length of channel cooled depends on the heat transfer coefficient and is insensitive to the reactivity when the heat transfer coefficient is numerically equal to or greater than the reactivity of the graphite.