ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
M. C. Cannon, W. R. Grimes, W. T. Ward, G. M. Watson
Nuclear Science and Engineering | Volume 12 | Number 1 | January 1962 | Pages 4-9
Technical Paper | doi.org/10.13182/NSE62-A25362
Articles are hosted by Taylor and Francis Online.
Adsorption isotherms for xenon on AGOT-grade graphite, having a surface area of 0.64 meter2/ gm, were determined at −79, 0, 20, 30, and 80°C in order to determine whether the presence of helium affects the adsorption behavior of xenon. The isotherms obtained from xenon-helium mixtures were essentially the same as those obtained using pure xenon gas. The calculated heats of adsorption for xenon range between 3500 and 3700 cal/mole and approximate the heat of vaporization of 3270 cal/mole reported in the literature. The volume of xenon adsorbed (cm3 at STP) per gram of graphite, a, versus xenon partial pressure, p (mm Hg), may be expressed by the equation a = bp0.8 over the ranges of temperature and pressure investigated. The values of b are 2.14 × 10−4 and 6.33 × 10−5 at 0 and 80°C, respectively. Based on straight line extrapolations of log plots of the adsorption isosteres to higher temperatures, b would have values of 6.5 × 10−6 and 4.1 × 10−6 at 500 and 750°C, respectively. Adsorption isotherms for argon were determined at −83 and 0°C and can be expressed by the same equation indicated above. At −83° and 0°C b has values of 1.00 × 10−4 and 1.60 × 10−5, respectively.