ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Frank J. Salzano, Allen M. Eshaya
Nuclear Science and Engineering | Volume 12 | Number 1 | January 1962 | Pages 1-3
Technical Paper | doi.org/10.13182/NSE62-A25361
Articles are hosted by Taylor and Francis Online.
The quantities of xenon taken up by type R-41 high density graphite in contact with xenon gas at 750° and 1000°C have been measured. A technique was developed whereby graphite at high temperature was equilibrated with xenon containing active tracer and the sample quenched in cold mercury to seal in the sorbed gas. It was determined that at these high temperatures there is no appreciable surface adsorption and that the major portion of the xenon in the graphite is contained in the interconnected pores. The quantity of gas held could be expressed by the ideal gas law if the void volume per gram of graphite and the partial pressure of the xenon were known. As a result of this work an explanation is offered for the high concentrations of fission xenon found (3) in graphite surfaces in contact with a neutron irradiated solution of uranium in bismuth.