ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Francisco J. Souto, Robert H. Kimpland, A. Sharif Heger
Nuclear Science and Engineering | Volume 150 | Number 3 | July 2005 | Pages 322-335
Technical Paper | doi.org/10.13182/NSE05-A2519
Articles are hosted by Taylor and Francis Online.
One of the primary methods to produce medical isotopes, such as 99Mo, is by irradiation of uranium targets in heterogeneous reactors. Solution reactors present a potential alternative to produce medical isotopes. The Medical Isotope Production Reactor (MIPR) concept has been proposed to produce medical isotopes with lower uranium consumption and waste than those in heterogeneous reactors. Commercial production of medical isotopes in solution reactors requires steady-state operation at ~200 kW. At this power regime, fuel-solution temperature increase and radiolytic-gas bubble formation introduce a negative reactivity feedback that has to be mitigated. A model based on the point reactor kinetic equations has been developed to investigate these reactivity effects. This model has been validated against experimental results from the Los Alamos National Laboratory uranyl fluoride Solution High-Energy Burst Assembly (SHEBA) and shows the feasibility of solution reactors for the commercial production of medical isotopes.