ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Üner Çolak, Volkan Seker
Nuclear Science and Engineering | Volume 149 | Number 2 | February 2005 | Pages 131-137
Technical Paper | doi.org/10.13182/NSE04-17
Articles are hosted by Taylor and Francis Online.
In this study, the criticality analysis for a pebble bed reactor, HTR-10, is performed with Monte Carlo simulations. The MCNP4B code package is utilized in the analysis with ENDF/B-VI continuous energy cross sections. The full core with the initial loading case is considered in simulations. The variation of the effective multiplication factor as a function of core loading height is also analyzed. Three different geometrical models are employed to see the effect of geometrical detail on the criticality calculations. Results are compared with diffusion calculations as well as the experimental data. Results show that the use of the homogenized fuel zone model does not yield acceptable results and underestimates the core criticality. However, the results obtained by using models with uniform and randomly distributed coated fuel particles in the fuel zone are in quite good agreement and there is not any systematic difference. Furthermore, criticality values do not change significantly with different random arrangements of coated fuel particles in fuel spheres. However, the random and irregular arrangements of pebbles may result in statistically different criticality values at least due to varying streaming effect.