ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Brian C. Franke, Anil K. Prinja
Nuclear Science and Engineering | Volume 149 | Number 1 | January 2005 | Pages 1-22
Technical Paper | doi.org/10.13182/NSE05-A2473
Articles are hosted by Taylor and Francis Online.
We present a computationally efficient single event Monte Carlo approach for calculating dose from electrons. Analog elastic scattering and inelastic energy-loss differential cross sections for electrons are converted into corresponding discrete cross sections that are constrained to exactly preserve low-order moments of the analog cross sections. While the method has been implemented and tested for the Rutherford model for scattering and energy loss, its dependence solely on cross-section moments makes our approach arbitrarily general.By comparison with analog Monte Carlo calculations, we demonstrate that few discrete angles and energies are required to achieve accurate dose distributions, and the calculations are fast. The method is capable of yielding accurate results across the entire spatial extent of the transport problem, from relatively isotropic scattering to highly forward-peaked scattering. We compare the accuracy of the angular approximation with the Goudsmit-Saunderson angular approximation commonly used by condensed history methods and similarly analyze the energy approximation. Finally, we present an investigation of the combined approximations and illustrate the accuracy of this method in the presence of a material interface. The computational efficiency of each method is explicitly compared using timing studies.