ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear and Emerging Technologies for Space (NETS 2025)
May 4–8, 2025
Huntsville, AL|Huntsville Marriott and the Space & Rocket Center
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
First concrete marks start of safety-related construction for Hermes test reactor
Kairos Power announced this morning that safety-related nuclear construction has begun at the Oak Ridge, Tenn., site where the company is building its Hermes low-power test reactor. Hermes, a scaled demonstration of Kairos Power’s fluoride salt–cooled, high-temperature reactor technology, became the first non–light water reactor to receive a construction permit from the Nuclear Regulatory Commission in December 2023. The company broke ground at the site in July 2024.
Shengzhi Liu, Naiyao Zhang, Zhenhua Cui
Nuclear Science and Engineering | Volume 148 | Number 3 | November 2004 | Pages 429-444
Technical Paper | doi.org/10.13182/NSE04-A2469
Articles are hosted by Taylor and Francis Online.
In this paper a systematic design method of fuzzy control systems is applied to the pressurized water reactor's (PWR) power control. The paper includes three parts. In the first part, a simplified time-varying linear model of the PWR power system is constructed, and its inner structure and time-varying characteristics are analyzed. That provides a solid basis for study and design of the nuclear reactor power control system. In the second part, a systematic design method of fuzzy control systems is introduced and applied to control the nuclear reactor power process. The design procedures and parameters are given in detail. This systematic design method has some notable advantages. The control of a global fuzzy model can be decomposed into controlling a set of linear submodels. Each submodel controller can be independently designed by using a linear quadratic regulator approach. This systematic design method gives a sufficient and necessary condition to guarantee the stability of fuzzy control systems; thus, better control performance can be obtained due to the accurate control gains. In the third part, the control performance of the nuclear reactor fuzzy control system is examined by simulation experiments, including nuclear reactor power shutdown, start-up, and adjustment operations. The satisfactory experiment results have shown that the systematic design method for fuzzy control systems is effective and feasible.