ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
M. Brovchenko, D. Heuer, E. Merle-Lucotte, M. Allibert, V. Ghetta, A. Laureau, P. Rubiolo
Nuclear Science and Engineering | Volume 175 | Number 3 | November 2013 | Pages 329-339
Technical Paper | doi.org/10.13182/NSE12-70
Articles are hosted by Taylor and Francis Online.
Molten salt reactors are liquid fuel reactors so that they are flexible in operation, but they are very different from solid fuel reactors in the approach to safety. This study concentrates on the specific concept named Molten Salt Fast Reactor (MSFR). Since this new nuclear technology is in development, safety is an essential point to be considered all along the research and development studies. After a short description of the MSFR systems, necessary to device accidental scenarios, this paper will focus on the decay heat evaluation of such a reactor. Among different contributions, the decay heat of fission products in the MSFR is evaluated to be low (3% of nominal power), mainly due to the reprocessing during the reactor operation. As a result, the contribution of the actinides is significant (0.5% of nominal power). However, the decay heat of the fission products is important, and among the different uncertainty sources, the fission yield uncertainties are pointed out. The unprotected loss of heat sink transients are studied in this paper. It appears that slow transients are favorable (>1 min) to minimize the temperature increase of the fuel salt. This work will be the basis of further safety studies as well as an essential parameter for the design of the draining system.