ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Ding She, Ang Zhu, Kan Wang
Nuclear Science and Engineering | Volume 175 | Number 3 | November 2013 | Pages 259-265
Technical Paper | doi.org/10.13182/NSE12-48
Articles are hosted by Taylor and Francis Online.
Burnup calculations consider the time dependence of the material composition or isotope inventory, which has important influence on the neutronic properties of a nuclear reactor. An essential part of burnup calculations is to solve the burnup equations, which can be approximately treated as a first-order linear system and can be solved by means of matrix exponential methods. However, because of the large decay constants of short-lived nuclides, the coefficient matrix of the burnup equations has a large norm and a vast range of spectra. Consequently, it is quite difficult to directly compute the matrix exponential using conventional methods such as the truncated Taylor expansion and the Pade approximation. Recently, the Chebyshev rational approximation method (CRAM), which is based on rational functions on the complex plane, has shown the capability to deal with this problem. In this paper an alternative method based on the generalized Laguerre polynomials is proposed to compute the exponential of the burnup matrix. Against CRAM, the Laguerre polynomial approximation method (LPAM) has simple recursions for obtaining the coefficients in any order, and all the computations are real arithmetic. A point burnup case and a pin-cell burnup case are calculated for validation, and results show that LPAM is promising for burnup calculations.