ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Alexander V. Voronkov, Elena P. Sychugova
Nuclear Science and Engineering | Volume 148 | Number 1 | September 2004 | Pages 186-194
Technical Paper | doi.org/10.13182/NSE04-A2450
Articles are hosted by Taylor and Francis Online.
A second order, semi-implicit numerical method for solving the multigroup nonstationary transport equation and corresponding code is developed in two-dimensional R-Z geometry. Finite difference meshes are formed by arbitrary convex quadrangles. The conservative finite difference scheme is derived by the integro-interpolation method. The balance equation is augmented by linear approximations. The proposed additional relationships provide the second order of approximation at any side-visible cases using a corresponding choice of the weights of scheme. The number of additional relationships in spatial variables, as well as their form, depends on how many visible sides are under consideration. The additional relationships in time and angle variables are diamond-difference-like approximations relating the edge values to the cell-centered values.An analytical test problem is used to demonstrate the second order of spatial approximation of the proposed method. To test the algorithm for solving the stationary transport equation, we compare the numerical results, obtained by the developed technique, with the results produced by one-dimensional (1-D) codes such as KIN1D (The Keldysh Institute of Applied Mathematics, Russia) and ANISN (U.S.) by using spherical symmetrical 1-D problems. Special analytical benchmarks are developed to test the nonstationary technique. The tests have shown good agreement of the results.