ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
B.Damiano,J. A. March-Leuba
Nuclear Science and Engineering | Volume 113 | Number 3 | March 1993 | Pages 271-281
Technical Note | doi.org/10.13182/NSE93-A24495
Articles are hosted by Taylor and Francis Online.
A technique for calculating an approximation to the time-dependent power of a boiling water reactor (BWR) during steady-state, low-amplitude limit-cycle oscillations is described. An approximate solution is obtained from the application of Galerkin’s method to a BWR dynamic model consisting of the point-kinetics equations and the power-to-reactivity feedback transfer function; such a feedback transfer function can be obtained from linear frequency domain stability codes, such as the LAPUR code. The approximate solution technique is described, and comparisons of approximate solutions with numerical results and measured data are given. It is concluded from these comparisons that the application of Galerkin’s method to the equations obtained from this particular BWR dynamic model can be used to extend results from a linear frequency domain stability code to calculate nonlinear, time-dependent reactor parameters during low-amplitude limit-cycle oscillations.