ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Drew E. Kornreich, Barry D. Ganapol
Nuclear Science and Engineering | Volume 126 | Number 3 | July 1997 | Pages 293-313
Technical Paper | doi.org/10.13182/NSE97-A24482
Articles are hosted by Taylor and Francis Online.
The Green's function method (GFM) is employed to obtain scalar and angular flux distributions in heterogeneous slab geometry with isotropic scattering. All solutions utilize the infinite-medium Green's function to obtain results infinite media. Past Green's function analyses that do not resort to expansions of the angular flux in basis functions have been performed for nonmultiplying media only; in this paper, results are provided, for the first time, for both multiplying and nonmultiplying media using the GFM. Several source configurations are considered, including a beam source on the leftmost face, isotropic incidence on any face, and constant inhomogeneous volume sources in internal materials. Scalar and angular flux distributions compare favorably with those obtained using the FN method as well as the ONEDANT discrete ordinates code. In addition, the single and heterogeneous critical slab problems are investigated and solved using the GFM.