ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J. A. Favorite, W. M. Stacey, Jr.
Nuclear Science and Engineering | Volume 126 | Number 3 | July 1997 | Pages 282-292
Technical Paper | doi.org/10.13182/NSE97-A24481
Articles are hosted by Taylor and Francis Online.
A new variational estimate for dynamic reactivity that accounts for delayed neutron holdback is introduced and adapted for use with the improved quasistatic (IQS) method. Numerical tests on a large light water reactor model indicate that the computational effort required with the IQS method can be reduced by a factor of 3 to 4 by using this new variational estimate of dynamic reactivity. With comparable computational effort, the accuracy of the standard IQS method, which uses the flux shape interpolation/recomputation procedure and a first-order estimate of static reactivity, can be improved by using a standard variational estimate without the flux shape interpolation/recomputation procedure, and it can be further improved by using the new variational estimate of dynamic reactivity.