ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Kirk A. Mathews, Charles R. Brennan
Nuclear Science and Engineering | Volume 126 | Number 3 | July 1997 | Pages 264-281
Technical Paper | doi.org/10.13182/NSE97-A24480
Articles are hosted by Taylor and Francis Online.
The exponential characteristic (EC) method is one of a family of nonlinear spatial quadratures for discrete ordinates radiation transport that are positive and at least second-order accurate and provide accurate results for deep-penetration problems using coarse meshes. We use a split-cell methodology to adapt the method to unstructured grids of arbitrarily shaped and oriented triangular cells that provide efficient representation of curved surfaces. Exponential representations of the flux entering through a cell edge and of the scattering source within a cell are constructed to match average values and first moments passed from the adjacent cell (or from the boundary conditions) or obtained from the angular quadrature of the directional flux spatial moments in the previous iteration (or from an initial guess). The resulting one- and two-dimensional nonlinear rootsolving problems are efficiently solved using Newton’s method with an accurate starting approximation. Improved algorithms, presented here, have increased the efficiency of the method by a factor of 10 as compared to an initial report. The EC method now costs only twice as much per cell as does the linear characteristic method but can be accurate with many fewer cells. Numerical testing shows the EC method to be robust and effective.