ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
F. Maekawa, Y. Oyama, C. Konno, M. Wada, Y. Ikeda
Nuclear Science and Engineering | Volume 126 | Number 2 | June 1997 | Pages 187-200
Technical Paper | doi.org/10.13182/NSE97-A24472
Articles are hosted by Taylor and Francis Online.
Benchmark experiments for the validation of secondary-gamma-ray data are conducted for iron and Type 316 stainless steel (SS316) shield assemblies bombarded by deuterium-tritium neutrons. Gamma-ray spectra and heating rates for both threshold and capture gamma rays are measured. With the present experimental data for gamma rays, a set of benchmark data for iron and SS316, including neutron energy spectra in entire energies and various dosimetry reaction rates, is completed for the first time. Secondary-gamma-ray data in JENDL-3.1, JENDL-3.2, JENDL-Fusion File, and FENDL/ E-1.0 are tested by benchmark calculation of the experiments. As a result, larger gamma-ray-production cross sections for threshold reactions in JENDL-3.1 and JENDL-3.2 and an inconsistent energy balance of the (n, γ) reactions in JENDL-3.1 are found. From the viewpoint of fusion engineering, the first priority in evaluating secondary-gamma-ray data should be conserving the energy balance. A rigid energy balance in both the JENDL Fusion File and FENDL/E-1.0 is confirmed for both threshold and capture gamma rays. The JENDL Fusion File and FENDL/E-1.0 provide the highly accurate secondary-gamma-ray data for iron and SS316 needed for fusion reactor nuclear design.