ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Byung Soo Moon
Nuclear Science and Engineering | Volume 126 | Number 1 | May 1997 | Pages 115-118
Technical Paper | doi.org/10.13182/NSE97-A24463
Articles are hosted by Taylor and Francis Online.
The major difficulties encountered in controlling the steam generator water level swell and shrinkage are analyzed. A mathematical model based on the amount of steam generated by depres-surization during the periodic steam dump is used to predict the level changes. When the existing proportional integral controller is applied to the negative of these predicted level changes and the output is added to the controller output for the normal level error, it is found that the water level does not go down below the lower limit or up beyond the higher limit. This control algorithm is tested on a model steam generator, and the results show it is capable of handling the difficulties in the control of the level swell and shrinkage.