ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
E. E. Lewis, G. Palmiotti
Nuclear Science and Engineering | Volume 126 | Number 1 | May 1997 | Pages 48-58
Technical Paper | doi.org/10.13182/NSE97-A24456
Articles are hosted by Taylor and Francis Online.
The multigroup simplified spherical harmonics equations with anisotropic scattering are derived from a variational principle that preserves nodal balance. The resulting equations are discretized using a Ritz procedure with spatial trial functions that are complete polynomials within the nodes and on the interfaces. The resulting equations are cast in a response matrix form and incorporated as an option of the variational nodal spherical harmonics code VARIANT. Fixed source and multigroup eigenvalue calculations are performed on benchmark problems. The accuracy and computational efficiency of spherical harmonic and simplified spherical harmonic approximations are compared, and the compensating effects of spatial and angular truncation errors are examined. The results indicate that in most situations, simplified and standard spherical harmonics results of the same order are in close agreement, while the use of simplified spherical harmonics substantially reduces computing costs.