ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Richard Sanchez, Norman J. McCormick
Nuclear Science and Engineering | Volume 147 | Number 3 | July 2004 | Pages 249-274
Technical Paper | doi.org/10.13182/NSE04-A2432
Articles are hosted by Taylor and Francis Online.
The limitations of asymptotic methods for numerically solving highly forward peaked scattering (HFPS) problems are reviewed before resorting to a discrete ordinates solution for such problems based on biased angular quadrature formulas to increase the precision of the angular representation and on source evaluation from cell-averaged angular fluxes to reduce memory requirements. Also, a twice-collided source is introduced to avoid numerical representation of singularities in the solution. As an example the propagation and spreading of a collimated particle beam in an HFPS medium has been calculated with a discrete ordinates diamond-differenced numerical solution of the transport equation in two-dimensional curvilinear cylindrical coordinates. The calculation was carried out for a strongly forward peaked Henyey-Greenstein scattering law for which Fokker-Planck asymptotic models are not valid. The results show promise for numerically calculated reference solutions based on accurate spatial representations for checking the accuracy of standard asymptotic models for these types of problems.