ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Richard Sanchez, Norman J. McCormick
Nuclear Science and Engineering | Volume 147 | Number 3 | July 2004 | Pages 249-274
Technical Paper | doi.org/10.13182/NSE04-A2432
Articles are hosted by Taylor and Francis Online.
The limitations of asymptotic methods for numerically solving highly forward peaked scattering (HFPS) problems are reviewed before resorting to a discrete ordinates solution for such problems based on biased angular quadrature formulas to increase the precision of the angular representation and on source evaluation from cell-averaged angular fluxes to reduce memory requirements. Also, a twice-collided source is introduced to avoid numerical representation of singularities in the solution. As an example the propagation and spreading of a collimated particle beam in an HFPS medium has been calculated with a discrete ordinates diamond-differenced numerical solution of the transport equation in two-dimensional curvilinear cylindrical coordinates. The calculation was carried out for a strongly forward peaked Henyey-Greenstein scattering law for which Fokker-Planck asymptotic models are not valid. The results show promise for numerically calculated reference solutions based on accurate spatial representations for checking the accuracy of standard asymptotic models for these types of problems.