ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. Christian Penland, Yousry Y. Azmy, Paul J. Turinsky
Nuclear Science and Engineering | Volume 125 | Number 3 | March 1997 | Pages 284-299
Technical Paper | doi.org/10.13182/NSE97-A24275
Articles are hosted by Taylor and Francis Online.
An error analysis is presented of the quartic polynomial nodal expansion method for solving the one-dimensional, neutron diffusion equation that originates from employing the transverse integration technique. Error bound expressions are determined for the L∞ error norms associated with the nodal surface flux and various moments of the nodal flux. Employing several test problems, these global error bounds were found to be conservative, but not excessively, in bounding the true errors Utilizing a functional form of the local error estimate for the node average flux, it is shown that a mesh-doubling technique can be effectively utilized to estimate the required cell size for uniform mesh refinement to achieve a specified global error fidelity. When employed in conjunction with a multigrid acceleration technique, this provides the foundations upon which to develop an adaptive spatial mesh algorithm.