ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC’s David Wright visits the Hill and more NRC news
Wright
The Nuclear Regulatory Commission is in the spotlight today for three very different reasons. First, NRC Chair David Wright was on Capitol Hill yesterday for his renomination hearing in front of the Senate’s Environment and Public Works Committee. Second, the NRC released its updated milestone schedules according to the Nuclear Energy Innovation and Modernization Act (NEIMA) and the executive orders signed by President Trump last month; and third, as reported by Reuters on Tuesday, 28 former NRC officials have condemned the dismissal of Commissioner Hanson earlier this month.
Renomination: EPW Committee chair Sen. Shelley Moore Capito (R., W.Va.) opened the hearing with a statement praising Wright’s experience and emphasized the urgency of stable leadership at the NRC.
“China is executing a rapid build-out of its nuclear industry,” Capito said. “The demand for clean, baseload power is skyrocketing as we position America to win the AI race.”
Ah Auu Gui, J. Kenneth Shultis, Richard E. Faw
Nuclear Science and Engineering | Volume 125 | Number 2 | February 1997 | Pages 111-127
Technical Paper | doi.org/10.13182/NSE97-A24261
Articles are hosted by Taylor and Francis Online.
Neutron and associated secondary photon line-beam response functions (LBRFs) for point monodirectional neutron sources are generated using the MCNP Monte Carlo code for use in neutron skyshine analysis employing the integral line-beam method. The LBRFs are evaluated at 14 neutron source energies ranging from 0.01 to 14 MeV and at 18 emission angles from 1 to 170 deg, as measured from the source-to-detector axis. The neutron and associated secondary photon conical-beam response functions (CBRFs) for azimuthally symmetric neutron sources are also evaluated at 13 neutron source energies in the same energy range and at 13 polar angles of source collimation from 1 to 89 deg. The response functions are approximated by an empirical three-parameter function of the source-to-detector distance. These response function approximations are available for a source-to-detector distance up to 2500 m and, for the first time, give dose equivalent responses that are required for modern radiological assessments. For the CBRFs, ground correction factors for neutrons and secondary photons are calculated and also approximated by empirical formulas for use in air-over-ground neutron skyshine problems with azimuthal symmetry. In addition, simple procedures are proposed for humidity and atmospheric density corrections.