ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
A. E. Ruggles, A. D. Vasil’ev, N. W. Brown, M. W. Wendel
Nuclear Science and Engineering | Volume 125 | Number 1 | January 1997 | Pages 75-83
Technical Paper | doi.org/10.13182/NSE97-A24255
Articles are hosted by Taylor and Francis Online.
Analytical and numerical investigations of critical heat flux (CHF) and reactor thermal limits are conducted for oscillatory two-phase flows often associated with natural circulation conditions. The CHF and associated thermal limits depend on the amplitude of the flow oscillations, the period of the flow oscillations, and the thermal properties and dimensions of the heater. The value of the thermal limit can be much lower in unsteady flow situations than would be expected using time average flow conditions. The properties of the heater strongly influence the thermal limit value in unsteady flow situations, which is very important to the design of experiments to evaluate thermal limits for reactor fuel systems.