ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Taro Ueki, Takamasa Mori and Masayuki Nakagawa
Nuclear Science and Engineering | Volume 125 | Number 1 | January 1997 | Pages 1-11
Technical Paper | doi.org/10.13182/NSE97-1
Articles are hosted by Taylor and Francis Online.
Biases in the estimators of the variance and intercycle covariances in Monte Carlo eigenvalue calculations are analyzed. The relations among the “real” and “apparent” values of variances and intercycle covariances are derived, where real refers to a true value that is calculated from independently repeated Monte Carlo runs and apparent refers to the expected value of estimates from a single Monte Carlo run. Next, iterative methods based on the foregoing relations are proposed to estimate the standard deviation of the eigenvalue. The methods work well for the cases in which the ratios of the real to apparent values of variances are between 1.4 and 3.1. Even in the case where the foregoing ratio is >5, >70% of the standard deviation estimates fall within 40% from the true value.