ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
W. J. M. de Kruijf, A. J. Janssen
Nuclear Science and Engineering | Volume 123 | Number 1 | May 1996 | Pages 121-135
Technical Paper | doi.org/10.13182/NSE94-108
Articles are hosted by Taylor and Francis Online.
Calculations of resonance absorption for simple temperature profiles both in a slab and in a pin of 238UO2 are presented to show the influence of a nonuniform fuel temperature profile on the choice of the equivalent uniform temperature, or the effective fuel temperature. The effective fuel temperature is given as a weighted average of the temperatures in the fuel zones. Two simple theoretical expressions for this weighted average, derived from the literature, are discussed. First, for high absorption, the effective fuel temperature is given by the so-called chord-averaged fuel temperature. Second, for low absorption, the effective fuel temperature is given by the volume-averaged fuel temperature. The results for a slab of 238UO2 show that a bruteforce method is necessary to calculate an accurate effective fuel temperature. A set of weights for one specific 238UO2 pin is calculated. This set agrees well with the chord-averaged fuel temperature. However, this appears to be a coincidence because the results for specific neutron energy ranges do not agree with this set of weights.