ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
B.D. Ganapol, G. C. Pomraning
Nuclear Science and Engineering | Volume 123 | Number 1 | May 1996 | Pages 110-120
Technical Paper | doi.org/10.13182/NSE96-A24216
Articles are hosted by Taylor and Francis Online.
We consider the two-region Milne problem, defined as the steady-state monoenergetic linear transport problem for two adjoining homogeneous source-free half-spaces, with a particle source coming from infinity in one of the half-spaces. We demonstrate that the asymptotic (Case discrete mode) component of the solution for the scalar flux is easily and explicitly written in terms of Chandrasekhar’s H-function for each medium. This asymptotic solution is shown to exhibit a discontinuity in both the scalar flux and current at the interface between the two half-spaces. Numerical benchmark results for the linear extrapolation distance and the discontinuities are given for various combinations of the mean number of secondaries (c) characterizing the two media. Contact is also made with a variational treatment. In particular, the variational formalism is shown to predict the linear extrapolation distance and these asymptotic discontinuities correct to first order in the difference between the values of c characterizing the two half-spaces.