ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
B.D. Ganapol, G. C. Pomraning
Nuclear Science and Engineering | Volume 123 | Number 1 | May 1996 | Pages 110-120
Technical Paper | doi.org/10.13182/NSE96-A24216
Articles are hosted by Taylor and Francis Online.
We consider the two-region Milne problem, defined as the steady-state monoenergetic linear transport problem for two adjoining homogeneous source-free half-spaces, with a particle source coming from infinity in one of the half-spaces. We demonstrate that the asymptotic (Case discrete mode) component of the solution for the scalar flux is easily and explicitly written in terms of Chandrasekhar’s H-function for each medium. This asymptotic solution is shown to exhibit a discontinuity in both the scalar flux and current at the interface between the two half-spaces. Numerical benchmark results for the linear extrapolation distance and the discontinuities are given for various combinations of the mean number of secondaries (c) characterizing the two media. Contact is also made with a variational treatment. In particular, the variational formalism is shown to predict the linear extrapolation distance and these asymptotic discontinuities correct to first order in the difference between the values of c characterizing the two half-spaces.