ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Isao Murata, Takamasa Mori, Masayuki Nakagawa
Nuclear Science and Engineering | Volume 123 | Number 1 | May 1996 | Pages 96-109
Technical Paper | doi.org/10.13182/NSE96-A24215
Articles are hosted by Taylor and Francis Online.
The method to treat randomly distributed spherical fuels in continuous energy Monte Carlo calculations has been established. In this method, the location of a spherical fuel is sampled probabilistically along the particle flight path from the spatial probability distribution of spherical fuels, called the nearest neighbor distribution. The necessary probability distribution was evaluated by a newly developed Monte Carlo hard sphere packing simulation code, which employs a random vector synthesis method to reduce overlaps of spherical fuels. The obtained probability distribution was validated by comparing a cross-section photograph of a real fuel compact and an X-ray diffraction experimental result. This method was installed in a Monte Carlo particle transport code and validated by an inventory check of spherical fuels and criticality calculations of ordered packing models. Also, an analysis of a critical assembly experiment was performed with the new code. As a result, it was confirmed that the method was applicable to practical reactor analysis. The method established is quite unique in the respect of probabilistically modeling the geometry of a great number of spherical fuels distributed randomly without any loss of the advantage of the continuous energy method.