ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Katsuhiro Sakai
Nuclear Science and Engineering | Volume 123 | Number 1 | May 1996 | Pages 57-67
Technical Paper | doi.org/10.13182/NSE96-A24212
Articles are hosted by Taylor and Francis Online.
A locally exact numerical scheme (LENS) based on the concept of locally exact numerical differencing is presented. The essence of the LENS scheme consists in determining the coefficients of the difference scheme so that the resulting equation interpolating numerical fluxes at the control volume surface satisfies the analytical solution of transport equations with absorption and source terms. The spatial distribution of the coefficients of transport equations is taken into consideration based on a four-region model among three adjacent control volumes, in which continuous conditions for solutions are imposed on the boundary between two adjacent regions. An analysis of nonoscillation properties of the present LENS scheme was performed using the characteristic polynomial analysis method. It was found that the LENS scheme possesses the potential for nonoscillation properties for stationary convection-diffusion equations with absorption. The LENS scheme is examined through numerical experiments and shows stable and accurate solutions for transport equations with absorption and source terms.