ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Katsuhiro Sakai
Nuclear Science and Engineering | Volume 123 | Number 1 | May 1996 | Pages 57-67
Technical Paper | doi.org/10.13182/NSE96-A24212
Articles are hosted by Taylor and Francis Online.
A locally exact numerical scheme (LENS) based on the concept of locally exact numerical differencing is presented. The essence of the LENS scheme consists in determining the coefficients of the difference scheme so that the resulting equation interpolating numerical fluxes at the control volume surface satisfies the analytical solution of transport equations with absorption and source terms. The spatial distribution of the coefficients of transport equations is taken into consideration based on a four-region model among three adjacent control volumes, in which continuous conditions for solutions are imposed on the boundary between two adjacent regions. An analysis of nonoscillation properties of the present LENS scheme was performed using the characteristic polynomial analysis method. It was found that the LENS scheme possesses the potential for nonoscillation properties for stationary convection-diffusion equations with absorption. The LENS scheme is examined through numerical experiments and shows stable and accurate solutions for transport equations with absorption and source terms.