ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Katsuhiro Sakai
Nuclear Science and Engineering | Volume 123 | Number 1 | May 1996 | Pages 57-67
Technical Paper | doi.org/10.13182/NSE96-A24212
Articles are hosted by Taylor and Francis Online.
A locally exact numerical scheme (LENS) based on the concept of locally exact numerical differencing is presented. The essence of the LENS scheme consists in determining the coefficients of the difference scheme so that the resulting equation interpolating numerical fluxes at the control volume surface satisfies the analytical solution of transport equations with absorption and source terms. The spatial distribution of the coefficients of transport equations is taken into consideration based on a four-region model among three adjacent control volumes, in which continuous conditions for solutions are imposed on the boundary between two adjacent regions. An analysis of nonoscillation properties of the present LENS scheme was performed using the characteristic polynomial analysis method. It was found that the LENS scheme possesses the potential for nonoscillation properties for stationary convection-diffusion equations with absorption. The LENS scheme is examined through numerical experiments and shows stable and accurate solutions for transport equations with absorption and source terms.