ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
A. Qaddouri, R. Roy, M. Mayrand, B. Goulard
Nuclear Science and Engineering | Volume 123 | Number 3 | July 1996 | Pages 392-402
Technical Paper | doi.org/10.13182/NSE96-A24202
Articles are hosted by Taylor and Francis Online.
Collision probability evaluation and flux computation are the most time-consuming aspects of applications based on the linearized time-independent transport equation. Parallelization for collision probability calculation and multigroup flux computation are investigated. Particular techniques pertinent to the two-step energy/space iterative process of solving a multigroup transport equation are described. The parallel performance is studied in cases where the cyclic tracking technique is used to integrate collision probability. Parallelization is achieved by distributing either different energy groups or different regions on a set of processors. These algorithms were tested on a four-processor IBM SP2 and an eight-processor SPARC 1000 as well as on networks of workstations using the public domain PVM library. Typical run times are provided for unit cell calculations.