ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Christoph Börgers,Edward W. Larsen
Nuclear Science and Engineering | Volume 123 | Number 3 | July 1996 | Pages 343-357
Technical Paper | doi.org/10.13182/NSE96-A24198
Articles are hosted by Taylor and Francis Online.
The Fermi pencil-beam approximation describes the broadening of a monoenergetic, nearly monodirectional particle beam in an optically thick system in which the mean scattering angle is small and large-angle scattering is negligible. This physical problem has applications in such diverse fields as astrophysics, materials science, electron microscopy, and radiation cancer therapy. The Fermi equation is derived two different ways: as an asymptotic limit of the Fokker-Planck equation for σtr → 0 and as an asymptotic limit of the linear Boltzmann equation for σtr→ 0 and σt → ∞. Some numerical results illustrating the Fermi approximation are also given.