ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Jay Basken, Jeffery D. Lewins
Nuclear Science and Engineering | Volume 122 | Number 3 | March 1996 | Pages 407-416
Technical Paper | doi.org/10.13182/NSE96-A24175
Articles are hosted by Taylor and Francis Online.
Accurate solutions of the reactor kinetics equations in a lumped model with time-varying reactivity have been obtained using a spreadsheet on a personal computer (PC)/workstation from a straightforward power series recurrence relation. These have been shown to converge readily over time steps of ∼ s in models of a thermal reactor. Solutions over such macrosteps can readily be extended to durations of interest (∼100 s). Examples are given for both a ramp reactivity input and an oscillating reactivity. This latter shows in a direct fashion the first-order phase distortion and the second-order effect on power level that are generally associated with perturbation solutions that have to be taken to second order. The method applies also to fast reactors. It is concluded that accurate calculations of thermal and fast reactor transients, obtained analytically with considerable difficulty, are readily available to the student on a PC.