ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Jay Basken, Jeffery D. Lewins
Nuclear Science and Engineering | Volume 122 | Number 3 | March 1996 | Pages 407-416
Technical Paper | doi.org/10.13182/NSE96-A24175
Articles are hosted by Taylor and Francis Online.
Accurate solutions of the reactor kinetics equations in a lumped model with time-varying reactivity have been obtained using a spreadsheet on a personal computer (PC)/workstation from a straightforward power series recurrence relation. These have been shown to converge readily over time steps of ∼ s in models of a thermal reactor. Solutions over such macrosteps can readily be extended to durations of interest (∼100 s). Examples are given for both a ramp reactivity input and an oscillating reactivity. This latter shows in a direct fashion the first-order phase distortion and the second-order effect on power level that are generally associated with perturbation solutions that have to be taken to second order. The method applies also to fast reactors. It is concluded that accurate calculations of thermal and fast reactor transients, obtained analytically with considerable difficulty, are readily available to the student on a PC.