ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Nobuhiro Yamamuro
Nuclear Science and Engineering | Volume 122 | Number 3 | March 1996 | Pages 374-383
Technical Paper | doi.org/10.13182/NSE96-A24172
Articles are hosted by Taylor and Francis Online.
In the field of accelerator development, medium-energy reaction cross-section data for structural materials of accelerator and shielding components are required, especially for radiation protection purposes. For ad + Li stripping reaction neutron source used in materials research, neutron reaction cross sections up to 50 MeV are necessary for the design study of neutron irradiation facilities. The current version of SINCROS-II is able to calculate neutron- and proton-induced reaction cross sections up to ∼50 MeV with some modifications and extensions of the cross-section calculation code. The production of isotopes when structural materials and other materials are bombarded with neutrons or protons is calculated using a revised code in the SINCROS-II system. The parameters used in the cross-section calculations are mainly examined with proton-induced reactions because the experimental data for neutrons above 20 MeV are rare. The status of medium mass nuclide evaluations for aluminum, silicon, chromium, manganese, and copper is presented. These data are useful to estimate the radiation and transmutation of nuclei in the materials.