ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
S. Das
Nuclear Science and Engineering | Volume 122 | Number 3 | March 1996 | Pages 344-358
Technical Paper | doi.org/10.13182/NSE96-A24169
Articles are hosted by Taylor and Francis Online.
The method of point reactor kinetics in conjunction with the new concepts of delayed spectrum factor and beta growth factor is used to calculate the sensitivity of the dynamic behavior of a fast breeder reactor to large changes in delayed neutron energies following postulated reactivity accidents. The positive ramp rates are introduced not to simulate physical possibilities but solely to test the sensitivity to delayed neutron spectral changes under different conditions. A limited number of transient calculations are made using the point-kinetics code SENSTVTY, six precursor groups, and Doppler feedback. The calculational method and the reactor model are described. Delayed neutron requirements in reactor dynamics are discussed, and a brief review of the sensitivity studies is presented. The results of the sensitivity calculations indicate that the relative power, the peak power, and the accident energy release are sensitive to changes in βeff resulting from uncertainty in the delayed spectral data, but the sensitivity of the relative power is much greater than the peak power and the accident energy release. The spread in the maximum reactivity reached is found to be ∼18%, and the time spread in the melting of fuel and cladding is in milliseconds.