ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Kiyonobu Yamashita, Ryuichi Shindo, Isao Murata, So Maruyama, Nozomu Fujimoto, Takeshi Takeda
Nuclear Science and Engineering | Volume 122 | Number 2 | February 1996 | Pages 212-228
Technical Paper | doi.org/10.13182/NSE96-A24156
Articles are hosted by Taylor and Francis Online.
The high-temperature engineering test reactor has been designed whose outlet gas temperature is 950°C. That is the highest temperature in the world for a block-type high-temperature gas-cooled reactor. The power distribution in the core was optimized by changing the uranium enrichment to maintain the fuel temperature at less than the limit (1600°C). Deviation from the optimized distribution due to the burnup of fissile materials was avoided by flattening time-dependent changes in local reactivities. Flattening was achieved by optimizing the specifications of the burnable poisons. Control rod destruction of the optimized power distribution was avoided by limiting the depth of insertion. The insertion depth of the control rods is limited by reducing the excess reactivity of the whole core by the burnable poisons to the minimum value necessary for operations.