ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Masaaki Mori and Mitsuru Kawamura, Koichi Yamate
Nuclear Science and Engineering | Volume 121 | Number 1 | September 1995 | Pages 41-51
Technical Paper | doi.org/10.13182/NSE95-A24127
Articles are hosted by Taylor and Francis Online.
A benchmark study is presented of new methodologies of the Studsvik CASMO-4/SIMULATE-3 advanced nuclear design code system against a pressurized water reactor (PWR)-type mixed-oxide (MOX) fuel critical experiment with high plutonium content. Both CASMO-4 two-dimensional transport core calculations and SIMULATE-3 nodal core calculations that use the pin power reconstruction model are performed for the experimental geometries. All the assembly two-group constants for SIMULATE-3, including those for MOX assemblies, are generated by CASMO-4 singleassembly calculations. The CASMO-4 improved transmission probability method and the SIMULATE-3 improved nodal and spectral interaction models are verified to be effective for accurate prediction of the pin power distribution inside high plutonium content PWR MOX assemblies and UO2 assemblies that are adjacent to the MOX assemblies.