ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Masaaki Mori and Mitsuru Kawamura, Koichi Yamate
Nuclear Science and Engineering | Volume 121 | Number 1 | September 1995 | Pages 41-51
Technical Paper | doi.org/10.13182/NSE95-A24127
Articles are hosted by Taylor and Francis Online.
A benchmark study is presented of new methodologies of the Studsvik CASMO-4/SIMULATE-3 advanced nuclear design code system against a pressurized water reactor (PWR)-type mixed-oxide (MOX) fuel critical experiment with high plutonium content. Both CASMO-4 two-dimensional transport core calculations and SIMULATE-3 nodal core calculations that use the pin power reconstruction model are performed for the experimental geometries. All the assembly two-group constants for SIMULATE-3, including those for MOX assemblies, are generated by CASMO-4 singleassembly calculations. The CASMO-4 improved transmission probability method and the SIMULATE-3 improved nodal and spectral interaction models are verified to be effective for accurate prediction of the pin power distribution inside high plutonium content PWR MOX assemblies and UO2 assemblies that are adjacent to the MOX assemblies.